Treść zadania
Autor: ~mis Dodano: 28.11.2016 (18:21)
Krawędź boczna ostrosłupa prawidłowego czworokątnego ma długość 6 i tworzy z wysokością ostrosłupa kąt 30°. Oblicz objętość tej bryly
Zadanie jest zamknięte. Autor zadania wybrał już najlepsze rozwiązanie lub straciło ono ważność.
Rozwiązania
Podobne zadania
powierzchnia boczna walca po rozwinieciu jest kwadratem o przekatnym ddł Przedmiot: Matematyka / Liceum | 1 rozwiązanie | autor: koksik06021990 27.9.2010 (13:48) |
w ostrosłupie prawidłowym trójkątnym krawędź boczna jest nachylona do Przedmiot: Matematyka / Liceum | 1 rozwiązanie | autor: okarolajnao 2.10.2010 (16:02) |
ściana boczna w ostrosłupie czworokątnym tworzy z płaszczyzną podstawy Przedmiot: Matematyka / Liceum | 1 rozwiązanie | autor: 19744 9.10.2010 (21:28) |
w ostrosłupie prawidłowym trójkątnym krawedz boczna jest nachylona do Przedmiot: Matematyka / Liceum | 1 rozwiązanie | autor: ciiiri 11.10.2010 (08:51) |
Oblicz ostrosłupa prawidłowego czworokątnego, w którym ściana boczna Przedmiot: Matematyka / Liceum | 1 rozwiązanie | autor: asiulka225 29.10.2010 (15:39) |
0 odpowiada - 0 ogląda - 1 rozwiązań
0 0
antekL1 28.11.2016 (19:07)
Oznaczmy przez x długość POŁOWY przekątnej podstawy, (podstawa jest kwadratem) i przez h wysokość ostrosłupa. Ta wysokość, połowa przekątnej podstawy i krawędź boczna tworzą trójkąt prostokątny
czyli
x = 6 * sin(30) = 6 * (1/2) = 3
h = 6 * cos(30) = 6 * pierwiastek(3) / 2 = 3 * pierwiastek(3).
Objętość V = (1/3) * h * x^2 / 2
V = (1/3) * 3 * pierwiastek(3) * 3^2 / 2 = 9 / 2 * pierwiastek(3)
====================
Dodawanie komentarzy zablokowane - Zgłoś nadużycie