Treść zadania
Autor: Deloper Dodano: 4.2.2014 (10:38)
Która z poniższych funkcji jest funkcją odwrotną do f(x) = 2arcsinx:
(a) g(x) = \frac{x}{2}
(b) g(x) = sin2x,
(c) g(x) = 2sinx,
(d) g(x) = \frac{sinx}{2}
prosze o rozwiazanie !
Zadanie jest zamknięte. Autor zadania wybrał już najlepsze rozwiązanie lub straciło ono ważność.
Rozwiązania
Podobne zadania
1 . Wykres funkcji przekształć w symertii względem punktu (0,0) a nastepnie Przedmiot: Matematyka / Studia | 2 rozwiązania | autor: syskaa17 18.5.2010 (18:58) |
NIESKOŃCZONY CIĄG LICZBOWY an jest określony wzorem an=4n-31, n=1,2,3... Przedmiot: Matematyka / Studia | 1 rozwiązanie | autor: paula24 9.6.2010 (14:50) |
Calka funkcji wymiernej Przedmiot: Matematyka / Studia | 1 rozwiązanie | autor: dominika9027 9.6.2010 (20:27) |
wyznacz ekstrema funkcji f(x,y)=x2-2xy+2y3+4y2-3 Przedmiot: Matematyka / Studia | 2 rozwiązania | autor: adulka 7.10.2010 (12:09) |
Znajdz dziedzine funkcji: F(x)= √(x^2+4x-5) F(x)= 1/(√(x-2) x) + Przedmiot: Matematyka / Studia | 2 rozwiązania | autor: maadziaa1991 14.10.2010 (16:37) |
Podobne materiały
Przydatność 50% Funkcje odwrotne do funkcji trygonometrycznych
Czytaj z załączniku:)
Przydatność 70% Twierdzenie Talesa i twierdzenie odwrotne
Twierdzenie Talesa Jeżeli ramiona kąta przecięte są prostymi równoległymi to stosunek długości którychkolwiek dwóch odcinków utworzonych na jednym ramieniu jest równy stosunkowi długości odpowiednich odcinków utworzonych na drugim ramieniu. Twierdzenie odwrotne do twierdzenia Talesa Jeżeli dwie dane proste przetniemy kilkoma prostymi i odcinki utworzone na jednej z danych...
Przydatność 50% Funkcje
Przy określaniu jakiegokolwiek przyporządkowania funkcję dzielimy na dwa zbiory -dziedzinę -przeciwdziedzinę Elementy dziedziny to argumenty a przeciwdziedzinyto wartości. Przy zadaniach z funkcji zawsze dane są dwa zbiory X i Y. Funkcja jest to takie przyporządkowanie kiedy każdemu elementowi za zbioru X przyporządkowany jest dokładnie jeden element ze zbioru Y Funkcja rosnąca...
Przydatność 60% Minimalizacja funkcji logicznych
Minimalizacja funkcji logicznych
Przydatność 55% Gradient funkcji. Różniczka zupełna
Gradient funkcji. Różniczka zupełna
0 odpowiada - 0 ogląda - 1 rozwiązań
0 0
Muflona 4.2.2014 (12:13)
Moim zdaniem jest to odpowiedź d, ponieważ:
y=2arcsinx
\frac{y}{2}=arcsinx
\frac{siny}{2}=x
i ostatecznie otrzymujemy:
y= \frac{sinx}{2}
Dodawanie komentarzy zablokowane - Zgłoś nadużycie