Treść zadania
Autor: stanis08 Dodano: 2.11.2013 (18:19)
Zadanie z kwantyfikatorów- dla pewnej liczby rzeczywistej X zachodzi równość pierwiastek X=0 , oblicz jego wartość logiczną i zaprzeczenie . z góry dziękuje.
Zadanie jest zamknięte. Autor zadania wybrał już najlepsze rozwiązanie lub straciło ono ważność.
Rozwiązania
Podobne zadania
Badanie trójmianu kwadratowego - zadanie optymalizacyjne. Przedmiot: Matematyka / Liceum | 1 rozwiązanie | autor: hmm 29.3.2010 (18:21) |
Dla jakich x liczby x2-5x,-2,-10 tworzą ciąg arytmetyczny. Przedmiot: Matematyka / Liceum | 1 rozwiązanie | autor: xnika502x 6.4.2010 (16:07) |
Dla jakich x liczby x2-5x,-2,-10 tworzą ciąg arytmetyczny. Przedmiot: Matematyka / Liceum | 2 rozwiązania | autor: xnika502x 6.4.2010 (16:07) |
zadanie - promień okręgu Przedmiot: Matematyka / Liceum | 1 rozwiązanie | autor: lestat919 6.4.2010 (18:17) |
dziewczęta stanowią 60% wszystkich uczniów pewnej szkoły.Ile dziewcząt Przedmiot: Matematyka / Liceum | 1 rozwiązanie | autor: gosia21051991 7.4.2010 (11:19) |
Podobne materiały
Przydatność 50% Liczby
1. Liczby rzeczywiste – wszystkie liczby , które odpowiadają punktom na osi liczbowej. 2. Liczby wymierne – liczby dające przedstawić się za pomocą ułamka p/q , gdzie p jest dowolną liczbą całkowitą, a q jest dowolną liczbą naturalną ( np. 1/7, 3 ½,- 32/5 , 0, -2,6 , 5 (3), 3. Liczby niewymierne – liczby nie dające się zapisać w postaci ułamka zwykłego ( np. 3, 5,...
Przydatność 50% Liczby
Liczby pierwsze Liczbę naturalną, która ma dokładnie dwa dzielniki, nazywamy liczbą pierwsza. Liczb pierwszych jest nieskończenie wiele. Znajdowanie ich nie jest jednak łatwe. Od pewnego czasu używa się do tego komputerów. Największa znana dziś liczba pierwsza została odkryta w lipcu 2001 roku przez Michaela Camerona i George'a Woltmana ma postać 213466917-1. Ma ona aż 4...
Przydatność 50% Opis przeżyć wewnętrznych - "Historia pewnej kobiety"
Na Podhalu żyła kobieta o imieniu Emilka. Mieszkała w pięknym domu z mężem i dwoma synami. Pewnej nocy obudziły ją dziwne odgłosy dochodzące z dołu. Zeszła cicho po schodach, wzięła z kuchni nóż i zajrzała ostrożnie do salonu. Stał tam wysoki mężczyzna w kominiarce. Ogarnął ją strach, a serce załomotało w piersi. Potem była już tylko krew, mnóstwo krwi i leżący...
Przydatność 70% Liczby zaprzyjaźnione
Są to dwie takie liczby naturalne M i N, z których każda jest sumą podzielników właściwych drugiej(przez podzielnik właściwy danej liczby rozumiemy każdy podzielnik mniejszy od tej liczby). Pierwszą parę takich liczb, którą podał jeszcze Pitagoras, stanowią liczby 220 i 284, ponieważ dzielnikami właściwymi liczby 220 są: 1,2,4,5,10,11,20,22,44,55 i 110, a ich suma wynosi...
Przydatność 65% Liczby kwantowe
1) Główna liczba kwantowa (n) - przyjmuje wartości kolejnych liczb naturalnych 1, 2, 3, ... (wg Bhora K, L, M, ...); - od niej zależy energia danego elektronu; - decyduje o rozmiarach orbitali - im większa wartość n, tym większy jest orbital; - maksymalna ilośc elektronów w powłoce wynosi 2m2 (kwadrat) n 1 = K 2 = L 3 = M 4 = N 5 = O 6 = P 7 = Q 2) Poboczna liczba...
0 odpowiada - 0 ogląda - 1 rozwiązań
1 0
oldom 2.11.2013 (19:23)
Ǝx p(x):x€R, √x=0
Zdanie jest prawdziwe(wartość logiczna =1)
Zaprzeczenie: Nieprawda, ze istnieje x dla którego √x=0
Zanegowany kwantyfikator szczegółowy staje się kwantyfikatorem ogólnym.
┐(Ǝx p(x) )↔( ∀x ┐ p(x) )
Zdanie : ( Nieprawda, że istnieje x €R, taki że √x=0 ) jest równoważne zdaniu:
(dla każdego x €R ,√x≠0)Wartość logiczna =0,zdanie fałszywe.
Jeśli używacie polskich oznaczeń kwantyfikatorów to zamień oznaczenia: Ǝx na Vx oraz ∀x na Λx
Dodawanie komentarzy zablokowane - Zgłoś nadużycie