Treść zadania

kasia7-

Rozwiąż nierównośc i podaj najmiejszą liczbę człkowitą która nie spełnia tej nierówności

x- 3(x- 1)/6>3x+5,5 Autor edytował treść zadania 13.10.2013 (16:14), dodano Rozwiąż nierównośc i podaj najmiejszą liczbę całkowitą która nie spełnia tej nierówności x-3(x-1):6>3x+5,5

Zadanie jest zamknięte. Autor zadania wybrał już najlepsze rozwiązanie lub straciło ono ważność.

Najlepsze rozwiązanie

  • 1 0

    Zauważ, że w tym zapisie częściowo upraszcza się 3 i 6, dostajemy:
    x- (x- 1)/2 > 3x+5,5

    Mnożymy wszystko przez 2, aby pozbyć się niewygodnego ułamka
    2x - (x - 1) > 6x + 11

    Usuwamy nawias:
    2x - x + 1 > 6x + 11 ; czyli x + 1 > 6x + 11

    Przenosimy x na prawo, 11 na lewo:
    1 - 11 > 6x - x ; czyli
    -10 > 5x

    Dzielimy przez 5 i mamy x < -2

    Szukaną najmniejszą liczbą całkowitą jest -2
    (gdyż x = -2 już NIE spełnia nierówności, zauważ, że nierówność jest "nieostra", znak ">", a nie ">=").

Rozwiązania

  • rybitwa11

    Po wymnożeniu obu stron nierówności przez 6 mamy
    6x-3(x-1)>18x-33
    6x-3x+3>18x-33
    3x+3>18x-33
    3x-18x>-33-3
    -15x>-36/*(-1)
    15x<36
    x<36/15
    x<2i 6/15
    x<2 i 2/3
    Pierwsza liczbą całkowitą nie spełniają tej nierówności jest liczba 3

Podobne zadania

Dajana888 Zadanie na zbiorze liczb. Przedmiot: Matematyka / Liceum 1 rozwiązanie autor: Dajana888 8.5.2010 (18:39)
tedy123456789 Zbadaj czy funkcja kwadratowa ma miejsce zerowe. podaj liczbe mniejsc zerowych Przedmiot: Matematyka / Liceum 1 rozwiązanie autor: tedy123456789 18.5.2010 (18:56)
anet791 Podaj najmniejszy wyraz ciągu określonego wzorem cn=(n+1/2)(n-6) Przedmiot: Matematyka / Liceum 1 rozwiązanie autor: anet791 26.5.2010 (22:08)
Greg01 1. Rozwiąż równanie 1:załącznik m1. 2. Narysuj wykres funkcji i podaj Przedmiot: Matematyka / Liceum 1 rozwiązanie autor: Greg01 26.5.2010 (22:31)
Greg01 1. Rozwiąż równanie 1:załącznik m1. 2. Narysuj wykres funkcji i podaj Przedmiot: Matematyka / Liceum 1 rozwiązanie autor: Greg01 28.5.2010 (18:56)

Podobne materiały

Przydatność 60% Dzieje Liczb

Liczba, jest podstawowym pojęciem matematyki, które powstało w świadomości człowieka na wiele tysięcy lat przed naszą erą, a następnie kształtowało się i rozwijało wraz z rozwojem cywilizacji i kultury. Z chwilą, gdy rozróżnienie między „jeden” i „wiele”- charakterystyczne dla ludów pierwotnych- przestało wystarczać, wprowadzone zostały liczby: 1,2,3,4,...,a więc...

Przydatność 75% Symbolika liczb

Liczbę 1 uważano dawno, dawno temu za liczbę najdoskonalszą. Jest to pierwsza liczba nieparzysta. Wszystkie inne liczby pochodzą od jedynki, np.2, to 1 + 1. Jeden - ile to jest: dużo czy mało? Zastanów się! Wszyscy chcą być pierwsi: w nauce, w sporcie, w zabawie, ale nikt nie chce dostać jedynki z klasówki! Liczba 2 jest pierwszą liczbą parzystą. Uważana była przed wiekami...

Przydatność 80% Cecha podzielności liczb naturalnych.

Cecha podzielności przez 2 Liczba jest podzielna przez 2 jeżeli jej ostatnia cyfra jest parzysta lub jest nią zero. Przykłady: 12, 48, 100, 124 Cecha podzielności przez 3 Liczba jest podzielna przez 3 jeżeli suma jej cyfr tworzy liczbę podzielną przez 3. Przykłady: 27 bo 2+7=9 123 bo 1+2+3=6 621 bo 6+2+1=9 Cecha podzielności przez 4 Liczba jest...

Przydatność 80% Cechy podzielności liczb.

Cechy podzielności przez 2 Liczba jest podzielna przez 2 jeżeli w rzędzie jedności ma cyfrę:0, 2, 4, 6, lub 8. Przykłady: 24, 506, 1002, 99990 Cechy podzielności przez 3 Liczba jest podzielna przez 3 jeżeli suma jej cyfr tworzy liczbę podzielną przez 3. Przykłady: 42 - 4+2 = 6 i 6 =2*3 783 - 7+8+3=18 i 18=6 * 3 1209 - 1+2+0+9=12 i 12=4*3 Cechy podzielności przez 4...

Przydatność 55% Ciekawe własności liczb

7 stron o ciekawych własnościach liczb, załączonych w załączniku. Polecam.

0 odpowiada - 0 ogląda - 2 rozwiązań

Dodaj zadanie

Zobacz więcej opcji