Treść zadania

Mr_Aleksander

A= (2,7) B= (-2,1)

1. Znajdujemy równanie prostej przechodzącej przez punkty A i B
2. Znajdujemy współrzędne środka odcinka AB
3. Znajdujemy prostą prostopadłą do prostej AB i przechodzącą przez punkt S AB ( przez środek )
4. Znajdujemy równanie okręgu o środku w punkcie A (lub B) i promieniu "pierwiastek" z 26
5. Rozwiązujemy układ równań (punkt 3 i 4)

Zadanie jest zamknięte. Autor zadania wybrał już najlepsze rozwiązanie lub straciło ono ważność.

Najlepsze rozwiązanie

  • 1 0

    W załączniku

    Załączniki

    • Niestety nie odczytuje mi rozwiązania w wordzie, jeśli możesz wysłać to w inny sposób to byłbym wdzięczny

Rozwiązania

Podobne zadania

rafaljanek Napisz równanie prostej prostopadłej do prostej 6x-y+2=0 i przechodzącej Przedmiot: Matematyka / Liceum 2 rozwiązania autor: rafaljanek 8.4.2010 (19:03)
aluszacedro znajdź równanie prostej prostopadłej do prostej y=1/2+7 i przechodzącej Przedmiot: Matematyka / Liceum 1 rozwiązanie autor: aluszacedro 12.4.2010 (15:09)
pako2411 Wzajemne położenie prostej i okręgu Przedmiot: Matematyka / Liceum 1 rozwiązanie autor: pako2411 14.4.2010 (17:36)
pako2411 Pilne Położenie prostej i okręgu Przedmiot: Matematyka / Liceum 1 rozwiązanie autor: pako2411 14.4.2010 (17:56)
kamcia07-15 Równanie prostej Przedmiot: Matematyka / Liceum 1 rozwiązanie autor: kamcia07-15 18.4.2010 (20:36)

Podobne materiały

Przydatność 85% Coming out - wszystko o homoseksualizmie w prostej wersji.

‘’COMING OUT’’ Czy orientacja seksualna naprawdę jest nie do zmiany? Orientacja seksualna oznacza preferowaną płeć partnera seksualnego. Jest to program wpisany w ośrodkowy układ nerwowy. Póki co, nie ma żadnych metod, żeby ten program zmienić. Człowiek rodzi się albo heteroseksualny, albo homoseksualny, albo...

Przydatność 60% Składanie sił położonych na jednej prostej i mających ten sam zwrot

Na prostej p mamy dwie siły: F1 i F2. Mają one zgodne zwroty. F1, F2 - siły składowe Fw - siła wypadkowa p - kierunek powyższych sił Przesuwając punkt przyłożenia siły F2 do końca siły F1 otrzymujemy odcinek |AE|, który jest wartością siły wypadkowej (Fw). |AE| = |AB| + |BE| |AE| = Fw |BE| = |CD| = F2 Fw = F1 + F2...

0 odpowiada - 0 ogląda - 1 rozwiązań

Dodaj zadanie

Zobacz więcej opcji