Zadanie jest zamknięte. Autor zadania wybrał już najlepsze rozwiązanie lub straciło ono ważność.
Rozwiązania
Podobne zadania
bardzo bym prosila o rozwiazanie. w 1 nalezy rozwiazac nierownosc, w 2 Przedmiot: Matematyka / Studia | 1 rozwiązanie | autor: klaudzia2504 16.1.2012 (20:18) |
0 odpowiada - 0 ogląda - 1 rozwiązań
0 0
Aphrael 24.3.2012 (18:28)
-6x^3 +5x - 1>0
\delta=b^2 - 4ac = 5^2 - 4\cdot (-6) \cdot (-1) = 25 - 24 = 1
\sqrt{\Delta} = 1
x_1 = \frac{-b-\sqrt{\Delta}}{2a} = \frac{-5-1}{2\cdot(-6)} = \frac{-6}{-12} = \frac{1}{2}
x_2 = \frac{-b+\sqrt{\Delta}}{2a} = \frac{-5+1}{2\cdot(-6)} = \frac{-4}{-12} = \frac{1}{3}
odp. Wartość równania jest większa niż 0 dla x= 1/2 i dla x=1/3
Dodawanie komentarzy zablokowane - Zgłoś nadużycie
Aphrael 25.3.2012 (12:32)
Poprawka: zapomniałam, że jest to nierówność. W tym przypadku rysujemy na osi X parabolę przechodzącą przez 1/2 i 1/3, jako, że a jest ujemne (-6) parabola skierowana jest ramionami na dół. Wartość funkcji jest większa od zera dla wszystkich "x" należących do paraboli leżących nad osią X.
x należy do przedziału (1/2,1/3)