Zadanie jest zamknięte. Autor zadania wybrał już najlepsze rozwiązanie lub straciło ono ważność.
Najlepsze rozwiązanie
Rozwiązania
Podobne zadania
Dany jest trójkąt o wierzchołkach A=(-4, 2) B=(0,4) C=(6,-4) a) wyznacz Przedmiot: Matematyka / Liceum | 2 rozwiązania | autor: MartaGrzeszczak1 29.3.2010 (17:43) |
Wypisz własności funkcji y=cos x Przedmiot: Matematyka / Liceum | 1 rozwiązanie | autor: Konto usunięte 8.4.2010 (18:17) |
wyznacz wszystkie liczby a i b dla których równanie ax - 4b = 2x = 8 nie Przedmiot: Matematyka / Liceum | 2 rozwiązania | autor: nikola29 15.4.2010 (19:01) |
wykres funkcji kwadratowej f(x)=3(x+1)kwadrat-4 NIE MA punktów wspólnych z Przedmiot: Matematyka / Liceum | 1 rozwiązanie | autor: iwona5000 17.4.2010 (11:27) |
Jaka jest najmniejsza wartość funkcji kwadratowej f(x)= x kwadrat +4x-3 w Przedmiot: Matematyka / Liceum | 1 rozwiązanie | autor: iwona5000 17.4.2010 (11:31) |
Podobne materiały
Przydatność 50% Miejsca zerowe Funkcji Kwadratowej
zad 5,7 5,8 5,9 str 293 podręcznik I klasa liceum Prosto do matury: M. Antek, K. Belka, P. Grabowski zad 5,7 Suma kwadratów trzech kolejnych liczb parzystych jest równa 56. Wyznacz te liczby. zad 5,8 Ile boków ma wielokąt, który ma 104 przekątne? zad 5,9 Obwód rombu jest równy 116 cm, a różnica długości jego przekątnych równa się 2 cm. Oblicz długości...
Przydatność 60% Walec, ostroslup, graniastoslup, funkcje, miejsce zerowe (mat. na spr)
1. Pole powierzchni walca Pc=2Pp+Pb Pc=2πr²+2πrH 2. Objętość walca V=Pp•H V=πr²•H 3. Objętość ostrosłupa V=⅓Pp•H Pc=Pp+Pb 4. Objętość i pole graniastosłupa V=Pp•H Pc=Pp+Pb 5. Bryłami obrotowymi nazywamy bryły, powstałe w wyniku obrotu figur płaskich wokół osi obrostu. 6. Funkcja Jeżeli dane są dwa zbiory X i Y i każdemu...
Przydatność 65% List, w którym wyznacze cele na nowy rok szkolny.
Przysietnica 02.09.2009 Angeliko! Pierwszego września rozpoczęłam nowy rok szkolny. Pamiętam, że jest to dzień szczególny, także z powodu siedemdziesiątej rocznicy wybuchu II Wojny Światowej. Wiem, że wtedy wiele dzieci ie mogło...
Przydatność 60% Minimalizacja funkcji logicznych
Minimalizacja funkcji logicznych
Przydatność 55% Gradient funkcji. Różniczka zupełna
Gradient funkcji. Różniczka zupełna
0 odpowiada - 0 ogląda - 1 rozwiązań
1 0
gosia1977 7.1.2012 (14:51)
musimy zalozyc, ze x+1≠0, czyli x≠-1 (bo mianownik nie moze byc rowny 0)
funkcja jest w formie ulamka, wiec bedzie rowna 0, gdy licznik bedzie zerem
w liczniku jest pierwiastek z liczby - pierwiastek bedzie rowny zero, gdy to co pod pierwiastkiem bedzie rowne 0 (bo tylko √0=0), czyli
x²-1=0
x²=1
x=1 lub x=-1 - dwa rozwiazania
ale x=-1 odpada, bo wtedy mianownik bedzie =0 (czyli ulamek nie bedzie mial sensu)
czyli jedynym miejscem zerowym tej funkcji jest x=1
Dodawanie komentarzy zablokowane - Zgłoś nadużycie