Treść zadania

ewelinax50

Zad.1. Dlaczego -x^2 i y^2 jest liczbą przeciwną do sumy kwdratów x i y?
Zad.2. Dlaczego liczba 1 należy do zbioru rozwiązań nierówności x^2 -2x - 3<0 ?
Zad.3. Dlaczego równanie (x^2 -x)/(x-1) = 0 posiada 1 rozwiązanie?
Zad.4. Dlaczego w przedziale (2; +niesk.) funkcja f(x)= -(x-2)^2 -7 jest malejąca?
Zad.5. Dlaczego zbiór <-6;10> pasuje do nierówności x^2 -4x -60 <= 0 ?
Zad.6. Dlaczego funkcja f(x)= (2- 1/3m)x+2 nie ma miejsc zerowych dla m=6?

Zadanie jest zamknięte. Autor zadania wybrał już najlepsze rozwiązanie lub straciło ono ważność.

Rozwiązania

Podobne materiały

Przydatność 50% Napisz funkcję w C++, która pobiera dwa argumenty typu całkowitego a,b, takie, że a < b, oraz zawraca wartość sumy wszystkich liczb całkowitych z przedziału obustronnie domkniętego <a, b>

Potrzebna nam jest funkcja pobierająca dwa argumenty typu int i zwracająca wynik typu całkowitoliczbowego - może to być int ale zważywszy na to, że wynik może być duży lepiej skorzystać z typu long int. Prototyp funkcji wygląda tak: long int sumuj(int a, int b); Teraz zabieramy się za utworzenie ciała funkcji. Najpierw musimy sprawdzić czy przekazane argumenty są...

Przydatność 60% Dzieje Liczb

Liczba, jest podstawowym pojęciem matematyki, które powstało w świadomości człowieka na wiele tysięcy lat przed naszą erą, a następnie kształtowało się i rozwijało wraz z rozwojem cywilizacji i kultury. Z chwilą, gdy rozróżnienie między „jeden” i „wiele”- charakterystyczne dla ludów pierwotnych- przestało wystarczać, wprowadzone zostały liczby: 1,2,3,4,...,a więc...

Przydatność 75% Symbolika liczb

Liczbę 1 uważano dawno, dawno temu za liczbę najdoskonalszą. Jest to pierwsza liczba nieparzysta. Wszystkie inne liczby pochodzą od jedynki, np.2, to 1 + 1. Jeden - ile to jest: dużo czy mało? Zastanów się! Wszyscy chcą być pierwsi: w nauce, w sporcie, w zabawie, ale nikt nie chce dostać jedynki z klasówki! Liczba 2 jest pierwszą liczbą parzystą. Uważana była przed wiekami...

Przydatność 80% Cecha podzielności liczb naturalnych.

Cecha podzielności przez 2 Liczba jest podzielna przez 2 jeżeli jej ostatnia cyfra jest parzysta lub jest nią zero. Przykłady: 12, 48, 100, 124 Cecha podzielności przez 3 Liczba jest podzielna przez 3 jeżeli suma jej cyfr tworzy liczbę podzielną przez 3. Przykłady: 27 bo 2+7=9 123 bo 1+2+3=6 621 bo 6+2+1=9 Cecha podzielności przez 4 Liczba jest...

Przydatność 80% Cechy podzielności liczb.

Cechy podzielności przez 2 Liczba jest podzielna przez 2 jeżeli w rzędzie jedności ma cyfrę:0, 2, 4, 6, lub 8. Przykłady: 24, 506, 1002, 99990 Cechy podzielności przez 3 Liczba jest podzielna przez 3 jeżeli suma jej cyfr tworzy liczbę podzielną przez 3. Przykłady: 42 - 4+2 = 6 i 6 =2*3 783 - 7+8+3=18 i 18=6 * 3 1209 - 1+2+0+9=12 i 12=4*3 Cechy podzielności przez 4...

0 odpowiada - 0 ogląda - 0 rozwiązań

Dodaj zadanie

Zobacz więcej opcji