Treść zadania
Autor: zuzaa12 Dodano: 20.10.2011 (20:16)
Hej proszę o jeszcze jedno
W trójkącie prostokątnym jeden z katów ma miarę 23stopnie. wysokosc opuszczona na przeciwprostokątną ma długośc 6cm.Oblicz długośc prezciwprostokątnej.
dziekuje
Zadanie jest zamknięte. Autor zadania wybrał już najlepsze rozwiązanie lub straciło ono ważność.
Najlepsze rozwiązanie
Rozwiązania
Podobne zadania
w prostokącie jeden bok wydłużono o 20%,a drugi o p% i otrzymano Przedmiot: Matematyka / Liceum | 1 rozwiązanie | autor: majka82101 15.4.2010 (19:51) |
W loterii fantowej wzięło udział 100 uczniów i każdy kupił jeden ze stu Przedmiot: Matematyka / Liceum | 1 rozwiązanie | autor: madzia992 27.4.2010 (19:52) |
oblicz pole trójkata którego jeden kat ma 60stopni a przeciwprostokatna 6√3 Przedmiot: Matematyka / Liceum | 2 rozwiązania | autor: diablicaatakuje 11.5.2010 (21:19) |
bok rombu ma 6cm jeden z katow ma 72stopnie oblicz dlugosc przekatnych Przedmiot: Matematyka / Liceum | 1 rozwiązanie | autor: diablicaatakuje 11.5.2010 (21:20) |
Oblicz pole i obwód trójkata prostokątnego, którego jeden z kątów ostrych Przedmiot: Matematyka / Liceum | 1 rozwiązanie | autor: Stellla 31.5.2010 (17:00) |
0 odpowiada - 0 ogląda - 1 rozwiązań
1 0
antekL1 21.10.2011 (10:05)
Stosunek wysokości do przyprostokątnej (tej przy kącie 23 stopnie) to sin(23). Wobec tego długość tej przyprostokątnej wynosi:
a = 6 / sin(23)
Drugi kąt ostry to 90 - 23. Analogicznie jak wyżej obliczam jej długość:
b = 6 / sin(90 - 23) = 6 / cos(23)
Z twierdzenia Pitagorasa obliczam długość przeciwprostokątnej c.
Korzystam z "jedynki trygonometrycznej"
c = \sqrt{\left(\frac{6}{\sin\,23}\right)^2 + \left(\frac{6}{\cos\,23}\right)^2} = 6\,\frac{\sqrt{\sin^2 23+\cos^2 23}}{\sin\,23\,\cos\,23} = \frac{6}{\sin\,23\,\cos\,23}}
Na kalkulatorze obliczam wartość tego wyrażenia.
Odpowiedź:
Przeciwprostokątna c = około 16,7 cm
Dodawanie komentarzy zablokowane - Zgłoś nadużycie