Treść zadania
Autor: tyna124 Dodano: 2.10.2011 (10:10)
Wyznacz wszystkie wartości parametru m , dla których równanie
x^2 - 4mx - m^3 + 6m^2 + m - 2 = 0
ma dwa różne pierwiastki rzeczywiste x1,x2 takie, że: (x1-x2)^2 < 8(m+1) .
Zadanie jest zamknięte. Autor zadania wybrał już najlepsze rozwiązanie lub straciło ono ważność.
Rozwiązania
Podobne zadania
Dany jest trójkąt o wierzchołkach A=(-4, 2) B=(0,4) C=(6,-4) a) wyznacz Przedmiot: Matematyka / Liceum | 2 rozwiązania | autor: MartaGrzeszczak1 29.3.2010 (17:43) |
wyznacz wszystkie liczby a i b dla których równanie ax - 4b = 2x = 8 nie Przedmiot: Matematyka / Liceum | 2 rozwiązania | autor: nikola29 15.4.2010 (19:01) |
Wyznacz współrzędne punktów, w których prosta o równaniu x + 2y + 3 = 0 Przedmiot: Matematyka / Liceum | 1 rozwiązanie | autor: lukaszunkile 18.4.2010 (16:16) |
Wyznacz równanie prostej do funkcji homograficznej Przedmiot: Matematyka / Liceum | 1 rozwiązanie | autor: krystian2409 26.4.2010 (15:43) |
W ciągu artmetycznym an wyznacz: a1=5 i różnica r=2.ILEpoczątkowych Przedmiot: Matematyka / Liceum | 1 rozwiązanie | autor: marcysia 19.5.2010 (10:45) |
Podobne materiały
Przydatność 65% List, w którym wyznacze cele na nowy rok szkolny.
Przysietnica 02.09.2009 Angeliko! Pierwszego września rozpoczęłam nowy rok szkolny. Pamiętam, że jest to dzień szczególny, także z powodu siedemdziesiątej rocznicy wybuchu II Wojny Światowej. Wiem, że wtedy wiele dzieci ie mogło...
0 odpowiada - 0 ogląda - 0 rozwiązań
Zgłoś nadużycie