Treść zadania
Autor: Martusia69 Dodano: 27.3.2011 (19:48)
Oblicz sin alfa gdy cos alfa= 1/3
Oblicz cos alfa gdy sin alfa = pierwiastek 5 przez 5
Zadanie jest zamknięte. Autor zadania wybrał już najlepsze rozwiązanie lub straciło ono ważność.
Najlepsze rozwiązanie
Rozwiązania
-
Anek 27.3.2011 (19:55)
sin alfa = \frac{1}{3}
cos alfa = \frac{b}{3}
sin alfa = \frac{\sqrt{5}}{5}[/tex]
cos alfa = \frac{b}{5}Dodawanie komentarzy zablokowane - Zgłoś nadużycie
-
rzbyszek 27.3.2011 (20:55)
a)
cos \alpha= \frac {1}{3}
sin^2 \alpha+cos^2 \alpha=1 \Rightarrow sin \alpha= \sqrt {1-cos^2 \alpha}=
=\sqrt {1- \frac {1}{9}}= \sqrt { \frac {8}{9}}= \frac {2 \sqrt 2}{3}
b)
sin \alpha= \frac { \sqrt 5}{5}
sin^2 \alpha+cos^2 \alpha=1 \Rightarrow cos \alpha= \sqrt {1-sin^2 \alpha}=
=\sqrt {1- \frac { (\sqrt 5)^2}{5^2}}= \sqrt {1- \frac {5}{25}}= \sqrt { \frac {20}{25}}= \frac {2 \sqrt 5}{ 5}Dodawanie komentarzy zablokowane - Zgłoś nadużycie
Podobne zadania
Oblicz pole i obwód figury ograniczonej wykresami funkcji y=5 i y=2x-8 oraz Przedmiot: Matematyka / Gimnazjum | 2 rozwiązania | autor: anett 28.3.2010 (18:59) |
Oblicz objętość i pole powierzchni całkowitej prawidłowego ostrosłupa Przedmiot: Matematyka / Gimnazjum | 1 rozwiązanie | autor: martamika007 29.3.2010 (18:59) |
Oblicz objętość i pole powierzchni całkowitej prawidłowego ostrosłupa Przedmiot: Matematyka / Gimnazjum | 1 rozwiązanie | autor: martamika007 29.3.2010 (19:00) |
Oblicz długość okręgu opisanego na trójkącie równobocznym o boku Przedmiot: Matematyka / Gimnazjum | 2 rozwiązania | autor: violetisavictim 30.3.2010 (16:30) |
Oblicz długość okręgu wpisanego w trójkąt równoboczny o boku długości Przedmiot: Matematyka / Gimnazjum | 2 rozwiązania | autor: violetisavictim 30.3.2010 (17:40) |
Podobne materiały
Przydatność 75% Alfa Centauri
Gwiazdozbiór Krzyża Południa (Crux) jest najbardziej charakterystycznym gwiazdozbiorem półkuli południowej. Na wschód od Krzyża Południa znajdujemy dwie jasne gwiazdy Alfa Centauri i Beta Centauri (Hadar) w Centaurze (Centaurus). Jest on rozległym gwiazdozbiorem nieba pdołudniowego. Alfa Centauri jest układem potrójnym gwiazd obiegających wspólny środek masy. W jego skład...
Przydatność 60% Promieniowanie alfa,beta,gamma
Promieniowanie alfa to rodzaj promieniowania jonizującego cechującego się małą przenikalnością. Promieniowanie alfa to strumień cząstek alfa. Cząstka alfa (helion) składa się z dwóch protonów i dwóch neutronów. Ma ładunek dodatni i jest identyczna z jądrem atomu izotopu 4He, więc często oznacza się ją jako He2+. Nazwa pochodzi od greckiej litery α. Cząsteczki alfa są...
Przydatność 60% Adrenolityki cz.1 L(alfa)
- L - adrenolityki - B - adrenolityki - leki sympatykolityczne, czyli hamujące czynność presympatycznych neuronów adrenergicznych. Leki te zmniejszają biosyntezę, magazynowanie i uwalnianie neuroprzekaźników (noradrenaliny) z zakończeń adrenergicznych. * L (alfa) - adrenolityki * Zmniejszają opór obwodowy, powodując zmniejszenie ciśnienia krwi. Nie stosuje się ich w...
Przydatność 60% Promieniowanie alfa beta gamma i jego wpływ na organizm człowieka
Badaniem skutków promieniowania jonizującego zajmuje się nauka zwana radiologią. Działanie biologiczne promieniowania jonizującego następuje w wyniku przeniesienia energii promieniowania do poszczególnych cząsteczek, z których składa się żywa komórka. Pierwotny skutek promieniowania występuje w komórce, chociaż zależnie od dawki promieniowania i liczby uszkodzonych komórek...
Przydatność 70% Pierwiastek chemiczny
Pierwiastek chemiczny, zbiór atomów o tej samej liczbie atomowej. Atomy danego pierwiastka chemicznego mogą się różnić liczbą neutronów, a zatem i masą jądra. Atomy takie nazywamy izotopami danego pierwiastka. Niektóre pierwiastki chemiczne tworzą odmiany alotropowe (alotropia). Przemiany jednych pierwiastków w inne zachodzą samorzutnie w przypadku pierwiastków...
0 odpowiada - 0 ogląda - 3 rozwiązań
2 1
ewka13 27.3.2011 (20:32)
a)
\ sin^{2}\alpha + \ cos^{2}\alpha = 1
\ sin \alpha = \sqrt {1 - \ cos^{2}\alpha} = \sqrt {1 - \frac {1} {9}}=
=\sqrt {\frac {8} {9}} = \frac {2} {3}\sqrt {2}
b)
\ cos \alpha = \sqrt {1 - \ sin^{2}\alpha} = \sqrt {1- (\frac {\sqrt {5}} {5})^{2}} =
=\sqrt {1 - \frac {5} {25}} = \sqrt {1 - \frac {1} {5}} = \sqrt {\frac {4} {5}} =
= 2 \sqrt {\frac {1} {5}}=\frac {2\sqrt {5}} {5}
Dodawanie komentarzy zablokowane - Zgłoś nadużycie