Treść zadania
Autor: QsX Dodano: 17.1.2011 (21:00)
zad.1.Rozwiąż równanie
a) \frac{x (x -1)}{4} = \frac{1/2 x^2 + 2}{2}
Zad.2 Wyznacz liczbę a,mając dany pierwiastek równania
a) 3x - (2x - 8) + a = 2 (x - 5) , x = 0
Zadanie jest zamknięte. Autor zadania wybrał już najlepsze rozwiązanie lub straciło ono ważność.
Najlepsze rozwiązanie
Rozwiązania
Podobne zadania
Suma czterech kolejnych liczb podzielnych przez 3 jest równa -150. znajdz te Przedmiot: Matematyka / Gimnazjum | 2 rozwiązania | autor: agata96 28.3.2010 (21:46) |
suma dwoch liczb wnosi 35. Jeżeli pierwsza z nich zwiekszymy o 20%, to ich Przedmiot: Matematyka / Gimnazjum | 1 rozwiązanie | autor: zuza94 8.4.2010 (18:41) |
Spośród czterech liczb druga jest o 4 mniejsza od pierwszej, trzecia 2 razy Przedmiot: Matematyka / Gimnazjum | 1 rozwiązanie | autor: lejek94 14.4.2010 (16:12) |
dane są odcinki o długosciach a i b . wyznacz długosc odcinka c aby trojkąt Przedmiot: Matematyka / Gimnazjum | 1 rozwiązanie | autor: szaraczek14 21.4.2010 (17:21) |
dane są odcinki o długosciach a i b . wyznacz długosc odcinka c aby trojkąt Przedmiot: Matematyka / Gimnazjum | 1 rozwiązanie | autor: szaraczek14 21.4.2010 (17:21) |
Podobne materiały
Przydatność 60% Dzieje Liczb
Liczba, jest podstawowym pojęciem matematyki, które powstało w świadomości człowieka na wiele tysięcy lat przed naszą erą, a następnie kształtowało się i rozwijało wraz z rozwojem cywilizacji i kultury. Z chwilą, gdy rozróżnienie między „jeden” i „wiele”- charakterystyczne dla ludów pierwotnych- przestało wystarczać, wprowadzone zostały liczby: 1,2,3,4,...,a więc...
Przydatność 75% Symbolika liczb
Liczbę 1 uważano dawno, dawno temu za liczbę najdoskonalszą. Jest to pierwsza liczba nieparzysta. Wszystkie inne liczby pochodzą od jedynki, np.2, to 1 + 1. Jeden - ile to jest: dużo czy mało? Zastanów się! Wszyscy chcą być pierwsi: w nauce, w sporcie, w zabawie, ale nikt nie chce dostać jedynki z klasówki! Liczba 2 jest pierwszą liczbą parzystą. Uważana była przed wiekami...
Przydatność 80% Cecha podzielności liczb naturalnych.
Cecha podzielności przez 2 Liczba jest podzielna przez 2 jeżeli jej ostatnia cyfra jest parzysta lub jest nią zero. Przykłady: 12, 48, 100, 124 Cecha podzielności przez 3 Liczba jest podzielna przez 3 jeżeli suma jej cyfr tworzy liczbę podzielną przez 3. Przykłady: 27 bo 2+7=9 123 bo 1+2+3=6 621 bo 6+2+1=9 Cecha podzielności przez 4 Liczba jest...
Przydatność 80% Cechy podzielności liczb.
Cechy podzielności przez 2 Liczba jest podzielna przez 2 jeżeli w rzędzie jedności ma cyfrę:0, 2, 4, 6, lub 8. Przykłady: 24, 506, 1002, 99990 Cechy podzielności przez 3 Liczba jest podzielna przez 3 jeżeli suma jej cyfr tworzy liczbę podzielną przez 3. Przykłady: 42 - 4+2 = 6 i 6 =2*3 783 - 7+8+3=18 i 18=6 * 3 1209 - 1+2+0+9=12 i 12=4*3 Cechy podzielności przez 4...
Przydatność 55% Ciekawe własności liczb
7 stron o ciekawych własnościach liczb, załączonych w załączniku. Polecam.
0 odpowiada - 0 ogląda - 1 rozwiązań
0 0
rzbyszek 17.1.2011 (21:49)
\frac{x (x -1)}{4}=\frac{ \frac {1}{2} x^2 + 2}{2} / \cdot 4
x (x -1) =2 \cdot ({1}{2} x^2 + 2)
x^2-x = x^2 + 4
x^2-x^2-x = 4
-x = 4
x = -4
a)
3x - (2x - 8) + a = 2 (x - 5) , x = 0
3x-2x+8+a=2x-10
x-2x+a=-10-8
-x+a=-18
0+a=-18
a=-18
Dodawanie komentarzy zablokowane - Zgłoś nadużycie