Treść zadania
Autor: Szajni Dodano: 28.4.2010 (18:36)
Witam.
Potrzebuję pomocy w objaśnieniu jak rozwiązywać równania kwadratowe np.
9x^{2} +6x +1 = 0
(3x + 1)^{2} = 0
3x+1 = 0
3x = -1
x = - \frac {1} {3}
Np. Gdzie zniknęło 6x z pierwszego wiersza ?
x^{2} + 4 = 2x^{2} - 6
-x^{2} + 10 = 0 / * (-1)
x2-10 = 0
(x - \sqrt{10} = 0 v x + \sqrt{10} = 0
x = \sqrt{10} x = - \sqrt{10}
[/tex]
Ogólnie nie wiem niektórych rzeczy dlatego prosił bym o wytłumaczenie po kolei jak to się rozwiązuje.
Pozdrawiam :)
Komentarze do zadania
-
Szajni 28.4.2010 (18:42)
@dark1212
W pierwszym poście są pokazane te równania już rozwiązane.
Ja muszę wiedzieć tylko jak je rozwiązywać :)
Pozdrawiam
Zadanie jest zamknięte. Autor zadania wybrał już najlepsze rozwiązanie lub straciło ono ważność.
Najlepsze rozwiązanie
Rozwiązania
-
dark1212 28.4.2010 (18:37)
rownania kwadratowe chodzi ci o to ze do potegi 2 np ?
Dodawanie komentarzy zablokowane - Zgłoś nadużycie
-
AgKrasn 28.4.2010 (19:13)
Wydaje mi się że tutaj należy obliczyć deltę ze wzoru delta = b2- 4ac, gdyż jest to równanie kwadratowe. A więc powinno to być tak:
9x2+6x+1=0 gdzie a = 9 >> stoi zawsze przy x2
b = 6 >> stoi zawsze przy x
c = 1 >> ’wolna’ liczba, nie stoi ani przy x2 ani przy x i tutaj wynosi właśnie 1
rozwiązanie:
delta = 62 – 4 * 9 * 1
delta = 36 – 4 * 9
delta = 36 – 36
delta = 0
W przypadku kiedy delta = 0, wówczas stosujemy wzór na x: x=(-b)/2a
a więc:
x=(- 6 )/(2*9)
x=(-6)/18
x=(-1)/3
Natomiast jeśli chodzi o drugie równanie, to trzeba najpierw poredukowac wyrazy tego równania, czyli przenieść na jedną stronę wszystkie wyrazy z x2 oraz x a na drugiej pozostawić ‘wolne’ wyrazy.
Czyli:
x2+ 4 = 2x2- 6
(należy pamiętać o zmianie znaku na przeciwny przy przenoszeniu wyrazów na
drugą stronę!!)
Rozwiązanie:
x2 – 2x2 = - 6 - 4
-x2 = - 10 / : ( -1)
x2 = 10 /: √
x = √10 i x = - √10
Powodzenia ;- )
Dodawanie komentarzy zablokowane - Zgłoś nadużycie
-
appis 29.4.2010 (09:30)
Bo w pierwszym równaniu masz zastosowany wzór skróconego mnozenia. 6x ci nie znikneło, poprostu równanie jest przekształcone według wzorów skróconego mnozenia.
9x^{2}+6x+1=(3x + 1)^{2}
Delty w tym przypadku nie musimy obliczać, oblicza się ją wtedy gdy nie mozemy zastosować wzorów skróconego mnożenia. Tutaj w rzeczywistości gdyby się rozdrabniac to rozpisujemy to tak:
(3x +1)(3x + 1) = 0
Wystarczy nam że zawartość jednego nawiasu wynosi 0, wtedy cokolwiek nie wyszłoby z drugiego to pomnożone przez 0 daje nam oczywiście wynik 0.
Normalnie rozpisujemy każdy nawias osobno ale ponieważ w obu jest to samo to piszemy tylko jeden.
3x +1 = 0
I co łatwo wyliczyć daje nam wynik -1/3
W drugim zadaniu jest dokładnie to samo. Równanie rozpisujemy na wzór skróconego mnożenia:
(x + \sqrt{10})(x - \sqrt{10})=0
I równiez którykolwiek nawias da nam 0 to całość będzie równa 0, więc rozpisujemy
x + \sqrt{10}=0
x - \sqrt{10}=0
dlatego mamy 2 rozwiązania
Mam nadzieję że pomogłem. Jak coś to dawaj komentarze postaram się odpisywac.
A jeśli podoba ci sie moja odpowiedz to daj jako najlepsząDodawanie komentarzy zablokowane - Zgłoś nadużycie
Podobne zadania
funkcje kwadratowe Przedmiot: Matematyka / Liceum | 2 rozwiązania | autor: asiula911 16.4.2010 (17:03) |
funkcje kwadratowe Przedmiot: Matematyka / Liceum | 3 rozwiązania | autor: asiula911 26.4.2010 (13:14) |
Równania kwadratowe Przedmiot: Matematyka / Liceum | 2 rozwiązania | autor: kaarolinaa93 6.5.2010 (11:37) |
Równania kwadratowe Przedmiot: Matematyka / Liceum | 3 rozwiązania | autor: kaarolinaa93 6.5.2010 (11:39) |
funkcje kwadratowe Przedmiot: Matematyka / Liceum | 1 rozwiązanie | autor: Rogalik89D 7.5.2010 (18:53) |
Podobne materiały
Przydatność 50% Równanie kwadratowe w excelu
Załącznik
0 odpowiada - 0 ogląda - 4 rozwiązań
0 0
emef9 28.4.2010 (18:58)
9x^ +6x+1=0
trzeba obliczyć deltę :
6^-4*9*1=36-36=0
delta =0 czyli jedno miejsce zerowe:
-b/2a = -6/2*9= -6/18 = -1/3
tak będzie prościej :)
ale oni zrobili to ze wzoru skróconego mnożenia:
(a+b)^ = a^ + 2ab + b^
bo wtedy jak jest (3x +1) ^ to będzie = 3*3x^+2*3x*1+1*1= 9x^+6x+1
^ to kwadrat xD
to drugie :
x^+4=2x^-6
przenosisz wszystko na jedną stronę:
x^-2x^+4+6=0
-x^+10=0 / (-1) <-żeby x^ było dodatnie
x^-10=0
teraz rozważasz kiedy x będzie równe 0
x^-10=0
to jest to samo co:
(x- pierwiastek z 10)(x+pierwiastek z 10) bo x razy x to x kwadrat a pierwiastek z jakiejś liczby razy pierwiastek z tej samej liczby to po prostu ta liczba
i jak zrobisz z pierwszego nawiasu x-10=0
to x=10
a z drugiego x+10=0
x=-10
EDITjeśli jeszcze czegoś nie rozumiesz to mi napisz to postaram się wytłumaczyć :)
Dodawanie komentarzy zablokowane - Zgłoś nadużycie