Treść zadania
Autor: renifer Dodano: 22.11.2010 (19:50)
Równania trygonometryczne pilne na dziś z góry dzieki
Zadanie jest zamknięte. Autor zadania wybrał już najlepsze rozwiązanie lub straciło ono ważność.
Najlepsze rozwiązanie
Rozwiązania
Podobne zadania
Pilne Położenie prostej i okręgu Przedmiot: Matematyka / Liceum | 1 rozwiązanie | autor: pako2411 14.4.2010 (17:56) |
WEKTORY - PILNE Przedmiot: Matematyka / Liceum | 1 rozwiązanie | autor: djmikuss 16.4.2010 (09:32) |
PILNE ! Przedmiot: Matematyka / Liceum | 1 rozwiązanie | autor: nikola29 16.4.2010 (17:18) |
pilne na jutro Przedmiot: Matematyka / Liceum | 1 rozwiązanie | autor: kasiaH171 22.4.2010 (19:59) |
pilne Przedmiot: Matematyka / Liceum | 1 rozwiązanie | autor: kasiaH171 22.4.2010 (19:56) |
Podobne materiały
Przydatność 65% Funkcje trygonometryczne
FUNKCJE TRYGONOMETRYCZNE Sinusem kąta ostrego w trójkącie prostokątnym nazywamy stosunek długości przyprostokątnej (a) leżącej na przeciw tego kąta do długości przeciwprostokątnej (c). sina=a/c Cosinusem kąta ostrego w trójkącie prostokątnym nazywamy stosunek długości przyprostokątnej (b) leżącej przy tym kącie do długości przeciwprostokątnej (c). cosa=b/c...
Przydatność 60% Funkcje trygonometryczne
Sinusem kąta ostrego w trójkącie prostokątnym nazywamy stosunek długości przyprostokątnej (a) leżącej na przeciw tego kąta do długości przeciwprostokątnej (c). sina=a/c Cosinusem kąta ostrego w trójkącie prostokątnym nazywamy stosunek długości przyprostokątnej (b) leżącej przy tym kącie do długości przeciwprostokątnej (c). cosa=b/c Tangensem kąta ostrego w...
Przydatność 60% Funkcje trygonometryczne - zaawansowane wzory
Funkcje trygonometryczne - wzory sin2x=2sinxcosx cos2x=cosxcox-sinxsinx sin(x+y)=sinxcosy+cosxsiny sin(x-y)=sinxcosy-cosxsiny cos(x+y)=cosxcosy-sinxsiny cos(x-y)=cosxcosy+sinxsiny sinx+siny=2sin((x+y)/2)cos((x-y)/2) sinx-siny=2sin((x-y)/2)cos((x+y)/2) cosx+cosy=2cos((x+y)/2)cos((x-y)/2) cosx-cosy=-2sin((x+y)/2)sin((x-y)/2) sin(-x)=-sinx cos(-x)=cosx tg(-x)=-tgx ctg(-x)=-ctgx
Przydatność 60% "Bo wykonać mi trzeba dzieło wielkie, pilne, bo z tych kruszców dla siebie serce wykuć muszę [...]" (L. Staff). Czy człowiek może być kowalem swojego
WSTĘP. A. Znane przysłowie mówi, że każdy jest kowalem swojego losu. Mądrość ludowa każe wierzyć w możliwość kreowania własnego życia, nadawania mu kształtu zbliżonego do naszych marzeń i pragnień. Przekonanie to wydaje się bliskie także L. Staffowi, którego słowa stanowią inspirację niniejszych rozważań. Poeta, czyniąc bohaterem wiersza symbolicznego kowala -...
0 odpowiada - 0 ogląda - 1 rozwiązań
0 0
52ewa 22.11.2010 (22:48)
Rozwiązania ( zadań zaznaczonych) w załączniku
Załączniki
Dodawanie komentarzy zablokowane - Zgłoś nadużycie