Treść zadania
Autor: paulinaskurzynska Dodano: 14.10.2010 (20:24)
rozwiniecie dziesiętne liczby 4/7 ma postac 0, a1a2a3......oblicz sumę
a1+a2+a3......+a2011.
Zadanie jest zamknięte. Autor zadania wybrał już najlepsze rozwiązanie lub straciło ono ważność.
Najlepsze rozwiązanie
Rozwiązania
Podobne zadania
oblicz: (tg30-ctg30)/cos30 Przedmiot: Matematyka / Liceum | 2 rozwiązania | autor: martusb93 29.3.2010 (18:20) |
oblicz objętość i pole powierzchni stożka o promieniu podstawy r,jeżeli Przedmiot: Matematyka / Liceum | 1 rozwiązanie | autor: olo 30.3.2010 (18:23) |
Dla jakich x liczby x2-5x,-2,-10 tworzą ciąg arytmetyczny. Przedmiot: Matematyka / Liceum | 1 rozwiązanie | autor: xnika502x 6.4.2010 (16:07) |
Dla jakich x liczby x2-5x,-2,-10 tworzą ciąg arytmetyczny. Przedmiot: Matematyka / Liceum | 2 rozwiązania | autor: xnika502x 6.4.2010 (16:07) |
1)Dane są wielomiany Oblicz W(x)=x³-2x+1 W(x)+Q(x) Q(x)=-x³+3x Przedmiot: Matematyka / Liceum | 1 rozwiązanie | autor: angelika1990 8.4.2010 (18:05) |
Podobne materiały
Przydatność 50% Liczby
1. Liczby rzeczywiste – wszystkie liczby , które odpowiadają punktom na osi liczbowej. 2. Liczby wymierne – liczby dające przedstawić się za pomocą ułamka p/q , gdzie p jest dowolną liczbą całkowitą, a q jest dowolną liczbą naturalną ( np. 1/7, 3 ½,- 32/5 , 0, -2,6 , 5 (3), 3. Liczby niewymierne – liczby nie dające się zapisać w postaci ułamka zwykłego ( np. 3, 5,...
Przydatność 50% Liczby
Liczby pierwsze Liczbę naturalną, która ma dokładnie dwa dzielniki, nazywamy liczbą pierwsza. Liczb pierwszych jest nieskończenie wiele. Znajdowanie ich nie jest jednak łatwe. Od pewnego czasu używa się do tego komputerów. Największa znana dziś liczba pierwsza została odkryta w lipcu 2001 roku przez Michaela Camerona i George'a Woltmana ma postać 213466917-1. Ma ona aż 4...
Przydatność 70% Liczby zaprzyjaźnione
Są to dwie takie liczby naturalne M i N, z których każda jest sumą podzielników właściwych drugiej(przez podzielnik właściwy danej liczby rozumiemy każdy podzielnik mniejszy od tej liczby). Pierwszą parę takich liczb, którą podał jeszcze Pitagoras, stanowią liczby 220 i 284, ponieważ dzielnikami właściwymi liczby 220 są: 1,2,4,5,10,11,20,22,44,55 i 110, a ich suma wynosi...
Przydatność 65% Liczby kwantowe
1) Główna liczba kwantowa (n) - przyjmuje wartości kolejnych liczb naturalnych 1, 2, 3, ... (wg Bhora K, L, M, ...); - od niej zależy energia danego elektronu; - decyduje o rozmiarach orbitali - im większa wartość n, tym większy jest orbital; - maksymalna ilośc elektronów w powłoce wynosi 2m2 (kwadrat) n 1 = K 2 = L 3 = M 4 = N 5 = O 6 = P 7 = Q 2) Poboczna liczba...
Przydatność 65% Liczby doskonałe
Liczby doskonałe to takie liczby których suma dzielników tworzy tę właśnie liczbę. Do tej pory znaleziono 36 liczb doskonałych podam 4 najmniejsze: 6={1+2+3} 28={1+2+4+7+14} 496={1+2=4+8+16+31+62+124+248} 8128+{1+2+4+8+16+32+64+127+254+508+1016+2032+4064}
0 odpowiada - 0 ogląda - 1 rozwiązań
0 0
Emandel 15.10.2010 (13:46)
Nie wiem czy takie coś jest dopuszczalne, ale można zauważyć :-))), że rozwinięcie dziesiętne jest okresowe 4/7 = 0.57(142857). Dwie pierwsze liczby rozwinięcia łatwo dodać. 5 + 7 = 12. Potem mamy 1 + 4 + 2 + 8 + 5 + 7 = 27. Sprawdzamy, że mamy dodać 2011 kolejnych liczb rozwinięcia. 5 i 7 już dodaliśmy. To nam zostaje 2009 liczb rozwinięcia. Patrzymy ile tych powtarzających się "szóstek" mieści się w 2009. 2009 / 6 = 334 reszty 5. No to 334 * 27 = 9018. Czyli mamy 9018 + 12 = 9030. Została nam już tylko ta reszta, czyli 5 liczb: 1 + 4 + 2 + 8 + 5 = 20. Zatem 9030 + 20 = 9050
Dodawanie komentarzy zablokowane - Zgłoś nadużycie